
102 G R A I N  B O U N D A R Y  P A R A M E T E R S  

the plane of the boundary are considered. In particular-~complete information on the relative orientation of 
the effect of t on the structure of a grain boundary is the two crystals and on the location of the boundary. 
ignored, or at least not explicitly considered. For 
instance, for a bicrystal to be in a c.s.1, orientation it 
is necessary that t =  0. This is implied by the existence 
of common lattice points (cf. § 2). Even when the axis/ 
angle pair has the correct values for the existence of 
a c.s.l., it is necessary that t =  0 for a c.s.1, boundary to 
occur. Fig. 1 shows how the parameter t can profound- 
ly change the atomic configuration at the boundary. 

The necessity of so many parameters to characterize 
a grain boundary, together with the fact that small 
fluctuations of the boundary parameters may drasti- 
cally affect the properties of grain boundaries, make the 
experimental determination of the parameters a dif- 
ficult and important question. The methods generally 
employed (diffraction techniques) do not provide 

They only give the direction of the axis of misorienta- 
tion and the value of 0, while t remains undetermined. 
Field-ion microscopy is probably unique in providing 
complete information on the grain boundary param- 
eters (cf. Fortes & Smith, 1970). 
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The entrance and exit surfaces are defined with respect to the Poynting vector, and the Bragg and Laue 
cases are redefined separately with respect to the wave vector on the entrance and exit surfaces. In this 
paper, the diffraction phenomena in the Laue (on the entrance surface)-Bragg (on the exit surface) case 
are discussed on the basis of both the plane-wave and spherical-wave theories. The two-beam approx- 
imation is used throughout, by taking account of absorption. Total reflexion is expected on the exit 
surface inside the crystal for either direct or Bragg-reflected waves. The wave fields in the spherical-wave 
theory are represented by Bessel functions, in the forms which are very similar to the Laue case (Kato, 
J. Appl. Phys. (1968). 39, 2225).This implies that the reflected waves are regarded as a divergent cylind- 
rical wave starting from an imaginary focal point. The treatments described here are easily extended to 
more general cases in plane-bounded crystals. In this sense, this paper is a preparation for treating 
the diffraction phenomena in a finite polyhedral crystal. 

Introduction 

The phenomena of PendelNSsung in crystal diffraction 
were originally predicted by Ewald (1916) and ob- 
served first by Kato & Lang (1959) in the X-ray case. 
Kato (1961a, b) has interpreted theoretically the ob- 
served fringe pattern by regarding the incident wave as 
a spherical wave. This theory is called 'spherical-wave 
theory' and the corresponding wave fields are called 
'spherical-wave solutions'. The conventional theory in 
which the incident wave is regarded as a plane wave is 
called 'plane-wave theory' and the corresponding wave 
fields called 'plane-wave solutions'. Later, Kato, Usa- 
mi & Katagawa (1967) extended the spherical-wave 
theory to the case of the crystal including a stacking 
fault. 

In the above theories, although the exit surface is not 
necessarily parallel to the entrance surface, it is 
assumed that both O (direct) and G (Bragg-reflected) 
waves pass through the exit surface. In general cases, 
however, one of the O and G waves cannot pass 
through the exit surface when it is nearly parallel to the 
lattice plane concerned. In fact, Borrmann, Hilde- 
brandt & Wagner (1955), Borrmann & Lehmann 
(1963) and Lehmann & Borrmann (1967) have studied 
experimentally diffraction phenomena under this con- 
dition. They have also considered the plane-wave 
theory for a special geometry* and highly absorbing 
crystals. 

* A symmetrical Laue case in which the lattice plane is 
perpendicular to the entrance surface and parallel to the exit 
surface. 
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Here, we shall treat this problem in the general case 
from the viewpoints of both plane-wave and spherical- 
wave theories. The method used is similar to that used 
in the previous theories of Kato, Usami & Katagawa 
(1967). First, the plane-wave solution is obtained and, 
next, the spherical-wave solution is represented as a 
superposition of the plane-wave solution. In the pre- 
sent case, contrary to the case of stacking faults, the 
integrals required are obtained rigorously in terms of 
Bessel functions. 

The present series of papers is intended to develop 
the spherical-wave theory already worked out in the 
Laue case, in order to describe the diffraction pheno- 
mena in a finite crystal bounded by plane surfaces. 
This paper, however, is only concerned with the 
simplest but most fundamental case in which the crystal 
is bounded by one entrance and one exit surface. This 
theory assumes that the incident wave creates one G 
wave under the Laue case condition on the entrance 
surface and that the crystal wave arrives at the exit 
surface under the Bragg case condition. The more gen- 
eral cases and the case in which the incident wave falls 
on an entrance surface under the Bragg case condition 
will be treated in succeeding papers. It should be 
pointed out that the same problem is considered by 
Uragami (Bragg case: 1969, 1970; Laue: 1971) on the 
basis of Takagi's (1969) approach to crystal diffraction. 

New definitions of the Laue and Bragg cases 

Before going into details, it seems desirable to clarify 
the concepts of 'the entrance and exit surfaces' and to 
re-define 'the Laue and Bragg cases' in a way suitable 
for further development of the theory. 

Ke Ke 

\ 
I///II/, ~/I/11///11//11// 

Kg Type I 
(a) Laue-Laue case (b) Laue-Brag! 

\ 
Ko 

ype II 
cases 

Ke Ke \fKg \fK  
/JJJjj  jjJJjJJJHjJNIJH K 

. . . .  

Ko 
(c) Bragg-Bragg case (d) Bragg-Laue case 

Fig. 1. Schematic illustration of various cases of crystal dif- 
fraction. 

When a plane wave falls on the crystal surface from 
the vacuum side, it is obvious that 

(Se . he )>0  (1) 

where n~ is the unit vector of the inward normal of the 
surface concerned and S~ is the Poynting vector of the 
incident wave. For this reason, 'the entrance surface' is 
defined by equation (1). When the crystal is terminated 
by another surface and a crystal wave hits this surface, 
the condition 

(s.  n . )>0  (2) 

must be satisfied, where n, is the unit outward normal 
of the surface and s is the Poynting vector of the crystal 
wave.* Since the crystal wave is of the Bloch type, the 
direction ofsmust be distinguished from that of the wave 
vectors k0 and kg, particularly when the crystal wave 
satisfies the Bragg condition to some extent. Hereafter 
equation (2) will be used as a definition of 'the exit 
surface'. 

In composite crystals including a fault plane, such as 
stacking fault, twin plane or grain boundary, the fault 
plane may act as the exit and entrance surfaces for the 
first and second parts of the crystal respectively. In 
this case, equation (1) must be read as 

(ft. lie) > 0 (3) 

for the second part of the crystal. The vector s in equa- 
tion (3) is the Poynting vector of the crystal wave in the 
first part of the crystal. 

Next, we shall define the 'Laue and Bragg cases' 
with respect to the wave vectors. When the Bragg- 
reflected waves emerge from the entrance surface, we 
shall call this the 'Bragg case on the entrance surface', 
whereas when they all propagate through the crystal, 
the case is called the 'Laue case on the entrance sur- 
face'. It is convenient to use the following analytical 
definitions: 

Bragg case: (K0. he) (]~g. he) < 0 (4a) 

Laue case: (K0. ne) (~,g. he) > 0 (4b) 

where K0 and l~g are the wave vectors of the incident 
and Bragg-reflected waves respectively, which satisfy 
the Bragg condition exactly in a kinematical sense. By 
the definition (1), (I(0. ne) is always positive so that the 
definitions (4a and b) are essentially referred to the 
sign of (Kg. n~). 

On the exit surface, if it exists, the definitions can be 
given similarly as follows; 

Bragg case: (K0. n,) (~[o. n,) < 0 (5a) 

Laue case: (K0. n,) (Ko. n,) > 0 (5b) 

* Throughout this paper, quantities pertinent to vacuum 
and crystal media are distinguished by capital and small letters, 
respectively. 
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Since the Poynting vector s is a weighted mean of the 
wave vectors K0 and Ko to a good approximation, and 
as a result of definition (2), both (I(0. n,) and ( I~ .  n,) 
are positive in the Laue case. It is clear, therefore, that 
O and G waves penetrate through the exit surface. In 
the Bragg case, only one of O and G waves can pass 
through the surface. In this case one can assign a de- 
finite sign neither to (K0. no) nor to (Ko. na). 

Since we need to consider at least a pair of entrance 
and exit surfaces, it is appropriate to specify the geo- 
metrical situation of the Bragg reflexion by four cases; 
Laue-Laue, Laue-Bragg, Bragg-Bragg and Bragg- 
Laue. Fig. 1 shows these cases schematically. Here, 
contrary to the conventional usage, the term the 
'Laue or Bragg case' is used only for a single surface. 
In more general cases, when a Bloch wave is reflected m 
times in succession at the crystal surfaces, one needs 
a more detailed specification such as Laue-(Bragg) m. If 
vacuum waves are created by the Laue-(Bragg)" wave 
under the Laue condition, they are called the Laue- 
(Bragg)m-Laue waves. 

The Laue-Bragg case: plane-wave theory 

According to the dynamical theory of crystal diffrac- 
tion, under the two-beam approximation, an incident 
wave excites two Bloch waves, (1) and (2), in a crystal. 
Each Bloch wave is composed of two component 
waves, the direct and the Bragg-reflected waves. For 
an incident wave of the form E~ exp [i(Ke • r)], they are 
represented in the following form (Zachariasen, 1945; 
Kato, 1961a). 

The direct wave: 

do(r)=EeCo exp [i{(Ke. re)+[k0 • (r-re)]}] .  (6a) 

The Bragg-reflected wave: 

do(r)=EeCo exp [i{[(K,+ 2~rg). rd+[ko .  (r-r ,)]}] (6/) 

where Co and Co are the amplitude factors and re 
indicates the position vector on the entrance surface. 

Meanwhile, the indices (1) and (2) specifying the types 
of Bloch waves are omitted in do, Co and ko and do, Co 
and ko.* The wave vectors ko and k o are related to Ke as 
follows (Laue, 1960), 

ko = K e -  Kfiene (tangential continuity) (7) 
ko = k0 + 2rcg  (reflexion condition). (8) 

The amplitude factors Co and C o, and the 'An- 
passung' fie, are functions of a reflexion strength 13 and 
a parameter s specifying the departure from the exact 
Bragg condition. The analytical expressions are listed 
in Tables 1 and 2. The definitions of fl and s are as 
follows, 

fl= KC(zoZ-o)* ~0 sin ~20B - )-0- flo (9) 

s = - K x +  2sin20B 1 -  ~'o (10) 

In these formulae, 0B is the Bragg angle, C the po- 
larization factor and K and Kx the magnitude and x- 
component of Ke; the coordinate axes are shown in 
Fig. 2. The quantities Z0 and Zo are the zeroth and 
g-th Fourier coefficients respectively of the polar- 
izability of the crystal for X-rays and 70 and ?'o are 

(I(0. n~) and (f(o. ne) respectively.J- 
By inserting equations (7) and (8) into equations 

(6a) and (6b), d0(r) and do(r ) can be rewritten as follows, 

do(r)=E~CoAo exp [i{ + ~ll/J+--flz- ~2s}] ( l la)  

do(r)=EeCoA o exp [i{ + ~l]/s:i+[32-~zs}]. ( l ib)  

The quantities ~1 and ~2 are functions of position 
parameters x and t, the latter being the depth of the 
observation point from the entrance surface, defined 
by 

t = [ ( r - r e ) ,  ne] • (12) 

* Here, Bloch wave (1) belongs to the branch of the disper- 
sion surface which is closer to the Lorentz point. 

]" indicates a unit vector. 

Co, r 

Cg,r 

Co,~ 

Table 1. The explicit forms of the amplitude factors {C} 

The Laue case 

Co 

G 

Type I 

- ½( - s _+ 1/s~gN)/( _ 1/s~ Bz) 

½(- s +_ Vs2 + pZ)l( +_ t /~ + p2) 

+ ~(z,lz_,)~/z(~,ol~,g)~/2B/i/i-~-.i pz 
The Laue-Bragg cases 

z g \ ~; ! ~,g (_ BI/s~-+/~2) 

Type II 

½(~,o/y~) (~,~/~';) (s_+ l/s~-P2)l(_+ 1,'~ +pz) 
_½ (zz_~.)'/2 ( ,o )  ~/2 B 

(+Vs2+/~2) 

{--S-----VsZ+fl2 ..}_ ~"0 ~'~ S-bVS~-fl2} 
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The explicit forms of ~ and ~2 are given in Table 3. The 
factors Ao and A o are given by 

Ao=exp[i (P+Kry+K~z)]  (13a) 
Ag = Ao exp [2zci(g. r)] (13b) 

where Ky and K~ are the y and z components of Ke 
and P is the phase independent of the parameter s, 

KZo KZo (~'° - 1 )  x .  (14) 
P =  -2))o-t 2 sin 20~ ~o 

For later purposes, the 'Resonanzfehler' At/0 and 
A~lo are introduced as 

Av/o = [I~o. (ko - 60)] (15a) 

Ar/o = [I~ o . (ko-6g)] (15b) 
---> 

where k0 and 6g are the wave vectors LO and LG in 
Fig. 2. The 'Resonanzfehler' are determined by the 
dispersion relation 

Aqo . Aqo= 1K2CZxoX- o • (16) 

They are represented in terms of the parameter s and 
listed in Table 4. 

So far, we have considered the crystal waves excited 
on the entrance surface. Now, the reflexion and trans- 
mission of the waves on the exit surface are considered. 
We must distinguish two modes of reflexion, Type I 
and Type lI [see Fig. l(b)]. In the former, (~,o. n,) is 
negative and in the latter (Ko. n,) is negative. Conse- 
quently, either the O wave or the G wave is totally 
reflected at the exit surface according to the prevailing 
mode. 

(a) Type I 
The boundary conditions at the exit surface are 

given by 

Eo,, exp [i(Ko, t .  r , ) ]=d  o exp [i(k o . ra)l 
+do, , exp Li(ko, , . ra)] (17a) 

0=d0 exp [i(k0. r.)] +d0,, exp [i(k0,r. r.)] (17b) 

where the subscripts r and t are used for the quantities 
corresponding to the reflected and transmitted wave 
fields, and ra indicates a point on the exit surface. 
Eo, t and Kg, t are the amplitude* and the wave vector of 
the vacuum wave respectively. From the tangential 
continuity condition, the wave vectors must satisfy the 
relations, 

ko,, = ko + K d r n a  (18a) 

ko.,. = ko + KO,.na (18b) 

Ko,, -- kg + K3on,. (18e) 

The condition of Bragg reflexion for the reflected waves 

kg, ,=ko, ,  +2rcg (19) 

is assured by taking the same Anpassung for the O and 
G waves. 

By using equations (7) and (8) and the relation 
Ke+2~zg=I~o+K x, equation (18c) is rewritten as, 

Kg, t = (Kg + Kx) - KOene + Kdgna. (20) 

The Anpassung fig is easily obtained, by taking the 
scalar product of equation (20) with g,g and using the 
approximation (Ka, r. g,g)=K 2, giving 

Kd ° = sin 208~ Kx + -77° Kde (21) 
?o ~o 

where y'~ is defined by equation (24b) below. 
To evaluate the Anpassung dr, it is convenient to 

introduce again the Resonanzfehler, At/o., and At/a,, 
for the reflected Bloch wave. These are defined by 

At/0,,= [I~0. (k0 , , -  60)1 (22a) 

Ar/o , , =  If( a . (ko , , -  60) ] . (22b) 

By inserting equations (18a and b) into equations (22a 

* To save letters, the amplitude and the wave field are 
expressed in the same notation, the latter being accompanied 
by the variable r. 

K& 

KcSo 

KcSo 

Table 2. The explicit forms of  the Anpassungen {d} 

K& 

Type I 

- .  - s -v ~ + 1 / s ~ - ~ 2  
Ya 

. KZo 7a (sT_l/sS-+---flz) 

o~ = sin 20a/(2ya). 
The Laue case 

- -  ½Kzo/Yo - c~(s + l /s  2 + f12) 

The Laue--Bragg cases 
Type II 

-~r -7_,, -~-° - ~  ~ - 
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and b) and taking account of the relations (15a and b), 
it follows that 

At/o,r = At/o + K6r7'o (23a) 

At~o., = At/o + Ka, r'~ (23b) 
where 

Yo = (1(o- n,) (24a) 

~'~ =(1( o . n,).  (24b) 

Since the dispersion relation holds both for the in- 
cident and reflected Bloch waves we shall have 

At/o,r . At/o.r =At/o . At/g . (25) 

Inserting equations (23a and b) into this relationship, 
we can determine the Anpassung and the Resonanz- 
fehler as follows: 

K5, = \ )"o + Y'o I (26) 

At/0,. = - __70 At/9 (27a) 

At/g.,-- - 7_~_ At/0. (27b) 
7o 

Since K~, ft., At/0 and At/g have been already obtained as 
functions of the deviation parameter s, fig [equation 
(21)] and fi~ [equation (26)] and A~/0,, and At/g,, [equa- 
tions (27)] can be expressed in terms of s. The results 
are shown in Tables 2 and 4. 

The amplitude ratio of O and G waves for the re- 
fleeted Bloch wave depends on the Resonanzfehler, as 
in the ease of the incident Bloch wave, in the form 

dg , KCxo  2At/o,, 
c~-  ~ . . . . . .  (28) 

do,, 2Arlg ,, K C z -  g 

Introducing this ratio into equations (17a and b), and 
writing the wave fields in the following forms, 

d o , , ( r ) = E ,  Co., exp [i{(K,. re) 
+[to. (r,-r~)]+[ko.,. (r-r~)]}] (29a) 

do.,(r) = & C o , ,  exp [i{[(K~ + 2zcg). rd 
+ [ k  o . ( r , - r~)]  +[kg . , .  ( r - r , ) ]}]  (29b) 

Eo, , ( r )=EeCo.  , exp [i{[(Ke+2zrg). rd 
-}-[kg. (ra--re)]+[Ko. t . (r--r,)]}] (29c) 

we have 
Co.,= - C o  (30a) 

C g . , = c ,  Co., (30b) 

Co. , = C o + Co. , . (30c) 

In the same way as in the case of equations (1 la  and b), 
the wave fields, equations (29), can be rewitten as 

do.,(r) = E~Co.,Ao exp [i{ _+ r h ] / S 2 - - ~ -  t/zS}] (31a) 

do. , ( r )=E~Co. ,A  o exp [i{ _+ t/d/s2T--fl~-t/2s}] (31b) 

Eo,,(r) = EeCg, rAg,, exp [i{ + (~ ] / sZ - -~ -  (2s}] (31c) 

El ~ (9 

na (2) 

(y 
X J 

G 

Fig. 2. The dispersion surface and the construction of dispers- 
ion points (Laue-Bragg cases; Type I). L: Lorentz point. 
L: Laue point. LO = Ko, LG = Kg, LO =k0 and LG = ko. Nor- 
mals ne and n, do not necessarily lie on the plane of drawing 
which is determined by Ke= EO and 2rrg = OG. 

Table 3. The expl ici t  f o r m s  o f  ~ ,  rh and  (l  ( i=  1,2) 

The Laue case 
~1 ~t 
~ 2  X - -  ~ l  

171 
r12 

~2 

Type I 
~ t - ~ t ,  {(?0/y~)+(yg/y~)} 
x - ~ t + ~ t ,  {(Yo/7~)-(Yg/Y~)} 

~t-~t,(?g/y~) 

The Laue-Bragg cases 
Type II 

~t -~ tv  {(Y0/Y~)+(~o/Y~)} 
x - ~ t + ~ t b  {(7o/Y;)--(Yo/7;)} 

~t-~tb(?o/7;) 
x-~t+~tb(ro/r~) 
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where A0 and A o are given by equations (13a and b). 
The factor Ag, ~ is given by 

A~ =Ao exp ( - i  KZ° ta) (32) 

where t, = ( r -  r , ) .  na (33) 

means the depth of the position vector from the exit 
surface. It is to be noticed that ta is positive when r is 
in vacuum, and negative in the crystal. Sometimes, we 
use the notation 

KZo 
Pg= P -  27-~- t , .  (34) 

The amplitude factors Co, r, Cg.r and Co, t are expressed 
in terms of s and the results are shown in Table 1. The 
quantities rh, rh, ff~ and ~z are functions of position 
parameters x, t and ta and shown in Table 3. 

(b) Type II 
In this case, the G component of the incident Bloch 

wave is totally reflected. The wave fields can be ob- 
tained by similar procedures to those used in Type I. 
The boundary conditions are read as 

E0,~ exp [i(K0,t. rb)] =do exp [i(k0. rb)] 

+d0,r exp [i(ko, r .  rb)] (35a) 

O=d o exp [i(k 9 . rb)l+dg,, exp [i(kg,r. rb)]  (35b) 

where Eo, t and K0,t are the amplitude and the wave 
vector of the transmitted vacuum wave, and rb indi- 
cates a point on the exit surface. 

The Anpassung of the wave vectors of the reflected 
crystal waves, corresponding to equation (26), is given 
by 

K ~ r = _  (A~o +A!o_) (36) 

where 
~,0=(Ko. n~) (37a) 

9)~= (f~o. nb) (37b) 

n~ being the outward normal of the exit surface. Simi- 
larly, the Anpassung of the wave vector of the trans- 
mitted vacuum wave is obtained as 

~'o K6~ (38) Kilo= ~o- 

which corresponds to equation (21). The expressions 
(27a and b) of the Resonanzfehler and the amplitude 
ratio, equation (28), need not to be altered provided 

s t  

that ~'0 and ),~ are replaced by )'o and 7o respectively. 
The explicit forms of the Anpassungen 0r and ~0 and 
the Resonanzfehler are shown in Tables 2 and 4. 

Writing the wave fields in a similar form to that of 
equations (29), as 

d0,,(r)= E~Co.r exp [i{(K~. re) 
+[ko. (rb-re)]-t-[k0.r. (r-ro)]}] (39a) 

do, r(ro)= EeC, r exp [i{[(Ke + 2zcg). re] 
+[ko. (rb-re)] +[kq, r.  (r-rb)]}] (39b) 

Eo,,(r)=EeCo.t exp [i{(K,. re) 
+[ko. (rb--r~)]+[K0,t. (r--rb)]}] (39e) 

we obtain the amplitude factors as follows, 

1 
Co, r = ~ Co,, (40a) 

Co,,= - C  o (406) 

Co,, = Co + Co,r. (40c) 

By the same procedures as those employed in Type I, 
the wave fields can be expressed as, 

do, r(r)=E~Co.rAo exp [i{ + r/ll/~@--flq- r/2s}] (41a) 

do, r(r)=EeCo, rA o exp [i{ + rhl/~2+]~-r/zs}] (41b) 

Eo, t(r)=EeCo, tAo, t exp [i{+ff~l/sZ--~-~s}] (41c) 

where Ao and A o are given by equations (13a and 6). 
The factor Ao, t is given by 

A0 t = Ao exp - i - - 7  tb (42) 
' 2)'0 

where 
tb=[ ( r - r~ ) ,  n~] (43) 

means the depth from the exit surface. Again, to is 
positive when r is in vacuum and negative in the crys- 
tal. Corresponding to equation (34), it is convenient to 
introduce the notation 

.g•o P0 = P -  -wv,- tb. (44) 
27o 

The explicit forms of Co,,, Co.r and Co,~ and rh, r/z, 
Q and ~2 are shown in Tables 1 and 3. 

The Laue-Bragg case: spherical-wave theory 

Under the usual conditions of X-ray diffraction exper- 
iments, an incident wave has to be regarded as a spher- 
ical wave. Consequently, there exists a triangular fan 
of wave fields between the directions of ~:0 and Kg 
passing through the entrance point. In this section a 
spherical-wave theory is developed based on the plane- 
wave theory described in the previous section. The 
procedures are similar to the spherical-wave theory in 
the Laue case for crystals including a stacking fault 
(Kato, Usami & Katagawa, 1967). 

A spherical wave can be represented by a Fourier 
integral or a superposition of plane waves as follows, 

4= 4nr e~K" - ~i l l exp [i(K " r)] dKxdKy (45) 

On the entrance surface, this wave excites the O and G 
component waves, which have been given in previous 
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papers (Kato, 1961b, 1968). These are reflected at the 
exit surface. The descriptions are given for Type I and 
II separately, as in the previous section. 

(a) Type I 
We shall take the incident wave having the form of 

Ee¢), where • is given by equation (45). Since a plane 
wave E~ exp i(K. r) produces the reflected wave fields 
d0.,(r) and do,,(r), which are given by equations (31a 
and b), the corresponding waves excited by the spher- 
ical wave Ee~ can be represented in the forms, 

O waves: 

i I l + ~ d ° " ( r )  dKxdKy (46a) q~0,,(r) = ~ ~'z " 

G waves: 

i I l ~ d ° " ( r )  dKxdK~,. (46b) 
~o,,(r) = ~ Kz 

The integration with respect to Ky can be carried out 
by the stationary phase method. This results in a mul- 
tiplication factor Dy = 2 ~ ~  exp (-irc/4). By virtue 
of the expressions for do.,(r) and do.,(r), ~bo.,(r) and 
q~o.,(r) can be written explicitly in terms of the param- 
eter s. 

~0.,(r)= -½[U0(+)+  Uo(- ) ] .  BoE~ (47a) 

G/  G 
+ Uo(- ) ] .  BoE~ (47b) 

where 

Bo= Bo exp [2zci(g. r)l (48b) 

Uo(_+) 

. . . . . .  + ~-/s%~ z -exp [i(+ r/l~/s~--+fl z -r/2s)]ds ~ 

(49a) 

wo( + ) 

exp [i( + r/~l/s-T+--~ - r/2s)ldsL 

(49b) 

The integrations can be performed straightforwardly 
as shown in Appendix A, s" being the real part of s. As 
is seen there, only rh + rh appear in the spherical-wave 
solutions. They are represented in terms of x0., and 
xo,,, which are the normal distances from the observa- 
tion point P to the lines JFaJ' and LFaL' in Fig. 3(a). 
The intersection F, is constructed as follows. The lines 
passing through the entrance point E in the directions 
Kg and K0 intersect with the exit surface S, and its 
extension S* at A and A* respectively. The point F, 
is the intersection of the lines passing through A and 
A* in the directions of K0 and i( o respectively. The 
expressions for rh + r/z are given in Appendix B, [equa- 
tions (B8a and b)]. The wave fields, then, have the 
forms, 

~; V X0.r q~o.,(r) = zcflo - ~ -  - - ~  J~(floVXo.,Xo.,). BoE,, 

for Xo, ,xo., > 0 
= 0 for Xo.,Xg., < 0 (50a) 

x.. ,  

× J2(~ol/x;, ,xo.,). BoEe 
for Xo.,Xo.,>O 

= 0 for Xo,,Xo., < 0 (50b) 

where J,  is the Bessel function of order n, and flo has 
been defined by equation (9). The wave fields (50a 
and b), therefore, take non-zero values only within 
the hatched regions [Fig. 3(a)]. They have the forms 
very similar to the wave fields in the Laue case, the 
point F~ playing the role of the point E in the Laue 
case. 

The result can be interpreted by considering the rays 
associated with the plane-wave solution. The ray direc- 
tions of the wave fields represented by Fourier integrals 
like equations (49a and b) can be obtained by the 
stationary phase method as in the treatment of Kato, 
Usami & Katagawa (1967). The stationary condition 
of the phase reads 

s 
- r / z+  ] / s ~  r / l=0 .  (51) 

This implies that all rays are straight lines, the direc- 
tion being specified by s. For sufficiently large values of 

Table 4. The explicit forms of the Resonanzfehler {At/} 

The Laue case 

Atlo ~yo(s + 1/sZ + pz) 
A~g O~yg(- s + I/s~T Bz) 

Atlo. r 
Atl~, r 

- ,yg(r;/r~) ( -  s _+ I/s~/~z) 

- ,r0(y;/r;) (s ___ 1/s~/~2) 

Type I 
The Laue-Bragg cases 

Type I 

- ~M~;/%) ( -  s _ V35T/~2) 

- ~ r 0 ( ~ / ~ ; )  (s__+ ~2 ~- ~2) 
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Is[, equation (51) tends to r/1 +_ r/z=0, namely lines LL' 
and JJ'. The intersection r/l=r/2=0, therefore, is the 
point F, explained above. Since equation (51) holds 
irrespective of the value of s for rh = 0  and r/2 =0,  all 
rays pass through the point Fa. 

j ,  
]" N" I L" M" 

N 
(a) 

j "  

v<©, ~, //g" 
L t 

J 

L C I 

(b) 
Fig. 3. The Laue-Bragg cases. (a) Type I, (b) Type II. Se:  The 

entrance surface. Sa and Sb: exit surfaces. P: Observation 
point. P K P  = lo, P I P  = Ig, P L P  = lo, r, P J P  = lg, r, H z P  = xo,  
H K P = x g ,  H j P = x o ,  r, Hz ,  P = x g ,  r. 

Physically speaking, the rays created at E in the 
directions between EK and EM are really reflected at 
the exit surface S,. The rays propagating in the direc- 
tions between EM and E1 are imaginarily reflected at 
the hypothetical surface Sa*. In the wave field obtained 
in equations (50a and b), the part between NN' and 
JJ' is the really reflected wave on the surface S, and 
its continuation on the vacuum side, whereas the part 
between LL' and NN' is nothing more than the imag- 
inarily reflected wave on the surface Sa*. Since the 
imaginarily reflected waves do not interfere with the 
wave field in the triangular fan CvlJ, the present solu- 
tion gives the correct wave field. 

(b) Type II 
The wave fields can be obtained in a similar way 

to the case of Type I. The plane-wave solution, equa- 
tions (41a and b) must be inserted in the integrand of 
equations (46a and b). The required integrals are cal- 
culated in Appendix A. The final results are given by 

ff0.,(r)=zq?o V x°" Jl(floVXo.,Xo., ). BoEe 
XO, r 

for Xo. ,xg,, > 0 
= 0 for x0.,xg., < 0 (52a) 

\X~-g/ sign (Xo.,) 

x Jo(gl/Xo,,Xg.,). BoE ~ 
for Xo.,Xo., > 0 

= 0 for x0.,xo., < 0 (52b) 

where, Xo. ~ and xo., are the normal distances from the 
observation point to the lines JJ' and LL' of Fig. 3(b). 
The wave fields take non-zero values only within the 
hatched regions. They can be interpreted in terms of a 
bundle of rays. As in the case of Type I, all rays con- 
verge at the focal point Fo. 

(c) The wave fields penetrating through the exit surface 
The spherical-wave solution can be obtained from 

the plane-wave solution, equation (31c) or (41c). The 
procedure is similar to that used in obtaining the crys- 
tal wave fields. The required Fourier integrals are ex- 
plained in Appendix A. The final results are given as 
follows. 

Type I: 

~g.,(r)= iz~Pg ( zX--~g_o ) * sign (xg) 

{x, 
x ~ J2(flgV(lT"ollY'o)xgxg.,) 

+ &(Pgl/(Ir'ol/Vg)XgXg.,) }. &,ee 
for xoxg.,>O 

= 0 for XoXg., < 0 .  (53a) 
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Type II: 

(ir:ll  xo x0, 
¢'o. , ( r )  = ni l9 k-~- /  - ~ o  

x ],(B,,V(I/~lh, o)XoXo.,). Bo.,E, 
for XoXo, ~ > 0 

= 0 for XoXo, ~ < 0 (53b) 
where 

(54a) 

Bo, t= ~-~ -~ -exp  zc +Po+Kz)] (54b) 

In deriving these, the following relations are used. 

C _ ¢ 2  = ~'o x 
~9 g 

~0 xg, r ¢1 + ¢2 . . . .  ; 
7~ 

s t  

C -  ez = - ~o  ~ x0,r 
~'g )'0 

C + ¢ ~ = x 0  

Type I 

(55a) 

(55b) 

(56a) 
Type II 

(56b) 

where x 9 and xg., are defined in Fig. 3(a), and Xo and 
x0., are defined in Fig. 3(b). The derivation of these is 
performed in the same way as in the case of rh + r/z and 
is explained in Appendix B. Since, from equation (53a) 
the Pendelltsung fringes in vacuum are essentially 
determined only by the quantities xg and xg. r, we know 
that the fringes are parallel to ~:g. The same situation is 
noticeable in the case of Type II, provided that K9 is 
replaced by g,0. 

Discussion 

In this paper, we have discussed the crystal and vacuum 
wave fields reflected under the Laue-Bragg conditions. 
From the view-point of the spherical-wave theory, the 
crystal wave is composed of O and G wave fields, which 
are confined in a triangular fan, emitted from an imag- 
inary focal point Fa or Fb as illustrated in Figs. 3(a) 
and (b). As in the Laue case (Kato, 1968), the wave 
fields are given rigorously by the Fourier transform of 
the wave fields obtained on the basis of the plane-wave 
theory. 

The results, in relation to some experiments, are 
discussed in the following paper. Here, only one math- 
ematical aspect, the justification of the integral range s 
or (K~) in the spherical-wave theory will be presented. 

We shall consider the Laue-Bragg case of Type I. 
The integral range was assumed to be ( - o o ,  + co) in 
equations (49a and b). At first sight, it may seem, from 
ray considerations, that the integral is taken over 
superfluous parts of the dispersion surface. In fact, the 

dispersion points corresponding to ( - c o ,  So) of 
branch (1) and (so, +co) of branch (2) denote the 
waves propagating between the directions EM and El, 
which may seem irrelevant to the reflexions on the sur- 
face S, in Fig. 3(a). 

To understand this situation, it is'worth while con- 
sidering the plane-wave solutions in the Laue case. 
Whatever the real crystal shape is, the solutions imply 
Bloch waves created on the infinitely extended surface 
S, and hypothetically conceivable waves on the vacuum 
side which are continuous with the crystal waves 
mentioned above. The spherical-wave solution is the 
superposition of these Bloch waves over all space. 
Thus, the solution includes the real wave field in the 
crystal emitted from the entrance point E and the 
imaginary wave field in vacuum converging on the 
point E. 

The plane-wave solutions in the Laue-Bragg case 
are the waves reflected at the surface S, and its exten- 
sion S,*, as the Bloch waves mentioned in the previous 
paragraph. They therefore include the waves reflected 
on the left hand side of So and S,*, as well as the waves 
reflected on the right hand side. As in the Laue case, 
the superposition of such waves, namely the spherical- 
wave solution, is actually confined within the hatched 
region in Fig. 3(a). The waves corresponding to the 
apparently superfluous parts of the dispersion surface 
imply the waves which are reflected on the left side of 
S, and S~. On the other hand, the waves corresponding 
to the physically significant parts imply the waves 
which are reflected on the right side. From ray con- 
siderations, therefore, it can be seen that the rays asso- 
ciated with the latter type of waves, those passing 
through F,, amount to the rays actually reflected inside 
the crystal while the rays associated with the former 
type of waves are hypothetical ones which are reflected 
at the extended surface $2. The spherical-wave solution 
includes this hypothetical part, which does not, how- 
ever, affect the crystal waves which are actually re- 
flected on the surface Sa, because the hypothetical rays 
and the real rays are separated in space. For this 
reason, the mathematical procedure of taking the 
integral range of s from - c o  to + co can be justified 
in all cases. 

APPENDIX A 
Fourier integrals required for the spherical-wave theory 

We shall consider the sum of the integrals 

Um=O.,(+)+Um(-) (A1) 
where 

- + I /S~ ,6  2 

× exp [i(_+ ~,s~lSC4-,6'-~,s)]ds'. (A2) 

These integrals always appear in the case of Type I, not 
only for the Laue-Bragg case but also for the Laue- 
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(Bragg) m cases which will be explained in the next 
paper. In the Laue-Bragg case, the values m= l (O 
wave) and m = 2 (G wave) are used. 

The integration can be performed by the contour 
integral method, which is essentially similar to that 
explained in the previous paper (Kato, 1968). The inte- 
gral paths required in the following calculation are 
defined in Fig. 2 of that paper. First, the complex func- 
tion 

m--1 

x exp [i( + r h ~  -~ +flZ--rhz)] (A3) 

is introduced. Here, the real. part of 1/ff-+--~ ~ is defined 
as positive for a large positive s r in the equation z= 
st+ isq The integral sum can be represented as follows: 

Urn= It1+~ Im(+)dz+ fr~+r Im(-)dz.  (A4) 

Under the conditions'~of 7t-7 7z > 0, since the inte- 
grals of lm(+ ) over the infinite semicircles of C(+) are 
zero, the above sum is reduced to 

Um=-It~+t2Ir~(+)dz-I13+14I~(-)dz • (A5) 

Changing the variable z into ~o by the relations z= 
it  sin q on/1 and/2 and z = - i t  sin ~ on/3 and 14, we 
have 

U,,,=ifl exp [i{m~o+p(rh cos ~o+ir/2 sin ~0)}]d9 
0 

=i/~ exp [i{m~0 +/~i/7~'7~ cos (~0 + 0)}ld~0 
0 

(,I, +- 72>0). (A6) 

Here, 0 is introduced by the relation 

01 cos 9 + i02 sin ~0-- [ / ~ -  7~ cos (9 + 0).  (A 7) 

The explicit form of e-o,,o will be given later. 
In the case of 71-7 72 < 0, the same procedures can be 

used for obtaining U,,, by integrating I,,,(+) over the 
contours C(-T ). Thus, we shall have 

Ur, t= - Ih+l lm( + ) d z -  lt,+h lr.(- ) dz 

= ft3+hIm(-)dZ+ll,+12I, n(+) dz 
m+l 2 2 = -2zci fldm(flV~i-72)e-im°,(71+72<O). ( A 8 )  

In other two cases of rh 2 -  022 < 0, taking either one of the 
contours C(+) and C ( - )  for integrating Ira(+) and 
Ira(-), we obtain 

Um=0, (712--722<0)- (A9) 

Now, we shall evaluate the factor e-~mo in equations 
(A 6) and (A 8). From equation (A 7) the following rela- 
tions are obtained 

cos 0 -  7x (.4 10a) 

sin 0 = - i 7----Z---z. (A 10b) 

Consequently, we obtain that 

e-,mo= ( q~-~h )~,  (71+02>0) 
01 + r/2 

e-''°=(-1)"(71-flz) 2 (rh+72<0). (Allb) 
\ 7 1 + 7 2  ' - 

(Alia)  

Substituting equations (A l la and b) into equations 
(A 6) and (A 8) respectively, we obtain 

Ura = 2hi m + 1,8 ( rh - ~12 ] 2 J m ( f l ~ -  72) 
X r h + 0 2  / 

(71 + q2>0) (A12a) 

v . ,  = m + 1)  m + ( - " 2 1  
\ rh +r/2 / 

' (01 +~2<0).  (A 12b) 

In the case of Type II, the following integrals 
appear instead of U~(+), calculated above. 

Vm(+)= (-~)ra-ll~("7+V'-~-~2)m_j_l/~.qt_j~ 2 

x exp [i(+ rh s 2 ~ - T z s ) ] d s L  (413) 

They are transformed to Urn(+) simply by changing the 
sign of q2- Thus, we have 

\ 01 - -  02 
(,11__.,1,_>o) (A 14a) 

V,,,=2rci'n+a(-1)"+lfl (71+02)2 Jm(flV72-72) , 
71- 72 

(71+72<0). (A 14b) 

In the above calculation it is implicitly assumed that 
the real part of t ,  fir, is positive. Even when fl' is nega- 
tive, however, the procedure is essentially identical. In 
this case, the integral sums Um and Vm are again given 
by equations (A 12) and (A 14) respectively. 

The spherical-wave solutions in vacuum are ex- 
pressed by the linear combination of the functions Um 
and Urn+ 2 for the cases of Type I, and of V m and Vm+ 2 
for the cases of Type II provided that the arguments 
71 and 72 are replaced by ~1 and ~2. 
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APPENDIX B 
The phase, terms of the plane-wave solutions1" 

(a) Type I 
The phase of the wave field, equation (29a), is 

rearranged in the form 

~ ,=  {(k0-K~). (r-r~)} 

+ {(k0, . -ko) .  ( r - r . ) }  + (Ke • r) • (B1) 

In this expression, re and ra are arbitrary provided that 
they lie on the entrance and exit surfaces respectively. 
For this reason, in the following calculation re is fixed 
at the entrance point E and r. is fixed at either A or A*, 
defined in Fig. 3(a). 

By the use of the oblique coordinate axes I~o and I£ o, 
one can write the differences of the position vectors, 

r -  r~ = lof£o + 10Ko (B2) 

r-ra=loKo+lo,,Ka (ra fixed at if) (B3a) 

=lo, rI~o+lal~a (ra fixed at ~f*) (B3b) 

where lo, 10, lo,. and lo,~ are the oblique coordinates 
defined in Fig. 3(a). From Fig. 2, it is seen that 

___>. . . +  - - +  

k 0 -  K~ = D E =  D L  + L £  + LE 

ko, ~ - ko = D~D = D r L -  DL 

where DL=(k0-~ ,o )  and DrL=(ko . , -k0)  and L E =  
-K:,.  Thus, we shall have, by the virtue of the defini- 
tions of Resonanzfehler [equations (15 and 22)] 

9 , = ~ +  z~o(t , -  to. r) + A,lo./o + ,%. / , . ,  
= ~ +  A,~o(to- lo.,) + A,lo. do + ~,Io. do., 

where 

(B4a) 

(B4b) 

c~ =Kry+ Kzz +½KZo(lo + 10). (B5) 

In deriving these we used (K~. r) = Kxx + Kyy + K~z; 
--->- 

K~,x-[K:,. ( r - r e ) ] = 0 ;  (LL.  ] io )=(LL.  Ko)=½KZo. In 
equation (B5), the term ½KZo(lo+lo) is the phase P 
defined in equation (14) [see equation (31) of Kato, 
1968]. 

As shown in equation (31a), 9, is rewritten as 

(B6) 

where rh and r/2 are the functions of lo, lo etc. As was 
seen in Appendix A, we need only the expressions for 
rh + r/2. For this purpose, we notice in equations (B4a 
and b) that Ar/0., and Ar/o., are proportional to At/o 
and At/0 respectively [see equations (27)], and that the 
terms proportional to At/0 and Ar/o are irrelevant in 

This appendix is given to show the method for finding 
the expressions for the phases in the Laue-Bragg cases. The 
principle involved is useful in multiple reflexion problems 
such as in the case of Laue-(Bragg) m. 

obtaining rh + r/2 and r h -r/2 respectively (see Table 4). 
We, therefore, see that 

[gr]+ = Arlo.flo., (B7a) 
[9.]- =A~Io..la.. (B7b) 

where [ ] + and [ ]_ are the operators used to select the 
relevant terms. Thus, finally we obtain 

r/1 + r/2- 70~ lo, r sin 208-  7o~ xo, . (B8a) 
70 70 

7"0 10, sin 208= 7o 70 x0,, (B8b) 7o 
/ 7 1  - - / ' ] 2  "~-- - -  7- , 

70 70 70 70 

where x0. r and xo. ~ are the perpendiculars to the lines 
JJ' and LL' from the observation point P in Fig. 3(a). 
The signs of x0,. and xo,. are determined by those of 
10, ~ and 10, ~ respectively. 

(b) Type II 
The same treatment can be applied to the case of 

Type II. The results are simply obtained by using the 
t t  

geometrical factors 70 and 7g instead of 7o and 7'g in 
equations (B8a and b); i.e. 

u 

70 = xo, r (B9a) 1/1 + r/2 7~- 
t /  

70 7~ x0,r (B9b) 
- -  - -  - t rh - r/2 = 70 70 

where x0.. and xo,, are the perpendiculars to the lines 
J J '  and LL' from the observation point P in Fig. 3(b) 

(c) The penetrating wave fields in vacuum 
In Type I, the phase ~o,, in equation (29c) is reduced 

to the following form by the use of equation (18e), 

9o, t = ~ +  K~ota+ drlolo+ Arlolo+ 2rc(g . r) (B10) 

where the form of Ka o is given in Table 2. Incidentally, 
the expression (34) of the constant phase Po is straight- 
forwardly obtained from equation (B10). 

Using operators [] + and []_ on 9o,3, we obtain 

[90,,]+=Aqolo+[K30t.]+=Arlo(lo-t./7'~) (Bl la )  

[~o. 3]- = Arlolo . (B 1 l b) 

From these, equations (55) for ~1 + (2 are obtained. 
In Type II, the phase in equation (39c) is given by 

90,, = ~ + K,~0tb + A&q0 + Aqdo (B12) 

where the relation Ko, t=k0 + K60nb is used and K60 is 
given in Table 2. It follows, therefore, that 

[90, ,1 + = Ar/olo (B 13a) 

[9o,,]=Aqolo+[K6ot~]_=Arlo(lo-tb/yo). (B 13b) 

From equations (B12) and (B13a and b), the expres- 
sions (44) and (56a and b) are obtained for P0 and 
Ca + Ca respectively. 
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The Theory of X-ray Crystal Diffraction for Finite Polyhedral Crystals. II. 
The Laue-(Bragg) m Cases 
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The wave fields specified by the Laue-(Bragg) m cases are treated from the view points of the plane-wave 
and spherical-wave theory. The results are very similar to those in the Laue-Bragg case in Part I (Acta 
Cryst. (1972). A28, 102.). The diffraction phenomena for a finite polyhedral crystal and the exper- 
iment of Lehmann & Borrmann (Z. Kristallogr. (1967). 125, 234) are discussed from the view point of 
the spherical-wave theory. 

Introduction 

When the exit surfaces, Sa and S~, are close to each 
other the Laue-Bragg waves obtained previously may 
be reflected many times at them before leaving through 
any one of the exit surfaces. In this Part, this topic is 
treated from the stand points of both the plane-wave 
and spherical-wave theories. According to the ter- 
minology defined in Part I (Saka, Katagawa & Kato, 
1972), this case is specified as the Laue-(Bragg) m case. 
The same notations as in Part I are used in this Part, 
unless otherwise specified. The equations of Part I are 
cited by adding I to the equation number. 

Here, again, two cases of Type I and II must be 
distinguished. In the former case, the crystal waves hit 
the exit surfaces in the sequence, Sa, S~, S~, . . . ,  
whereas the sequence starts from Sb in the latter case 
(see Fig. 1). In order to specify the quantities pertinent 
to the wave fields reflected m times, the suffix m is 
added to them, e.g. the wave vector k0. m and An- 
passung 0m. Obviously, k0.0, ko. ~ and 0~ are k0, k0., and 
~, in Part I. 

The wave fields of Type I 

As shown in Fig. l(a), the waves reflected 2n and 2n + 1 
times fall on the exit surfaces S, and Sb respectively. 

The boundary conditions for the totally reflected 
waves are read as, 

O=do.2,, exp [i(ko,2.. ra.z.+,)] 

+d0,2.+1 exp [i(ko, en+l. ra,2.+l)] (la) 

0=do, z.+l exp [i(ko,2.+l. r~,2.+2)] 

+d0,2.+2 exp [i(ko,2.+a. r~.2.+2)] (lb) 

where ra, z.+l and rb,2.+2 denote position vectors on 
the surfaces Sa and Sb. 

From these equations, one can obtain the recurrence 
formulae 

do,2.+l = -do,2n exp[i{(ko,2n-ko,2n+x), ra, 2n+l}] (2a) 

At/o,2.+1 do 2.+1 
d°,2"+2= Aq0,2n+2 ' 

× exp [i((ko, 2 .+1-  ko, 2.+2) • rb,2.+2}] • (2b) 

In the last equation, the relations kg, m = ko, m + 2rig and 
dg, ,,,/do, m = 2At/o, m/KCz-o are used, where At/o, m is the 
Resonanzfehler of the wave reflected m times. By 
combining these, it is easy to see that 

A C 28A - 2 


